PROJECT OUTCOME
Current location:Home > PROJECT OUTCOME > Papers > FRPs & Advanced Composite >
NEXCEL Project Paper 23
Release time: 2024/08/28  Publisher: original  Views:
Effect of ICCP on tensile performance and piezoresistive effect of CFRCM plates


Introduction
Mr. Liu Jiarong from Zhejiang University, Ph.D Student of NEXCEL 2024 PHD project "Study on Multifunctional Carbon Fabric Reinforced Sea Water and Sea Sand Concrete Composite Component System," have published a paper entitled "Effect of ICCP on tensile performance and piezoresistive effect of CFRCM plates" in "Engineering Structures" (SCI) recently.
 

图片

 
Abstract:
 
Currently, extensive research has been conducted on carbon fabric−reinforced cementitious matrix (CFRCM) composites, impressed current cathodic protection (ICCP), and the piezoresistive effect in the field of strengthening of reinforced concrete (RC) structures, corrosion protection of steel reinforcement, and structural health monitoring, respectively. This study utilized two types of matrix materials: normal matrix (sand conforming to ISO standard) and seawater sea-sand matrix. The mechanism by which the ICCP procedure affects the degradation of tensile performance in CFRCM plates with these two types of matrix materials was investigated in the study. Additionally, the piezoresistive effects of CFRCM with the two types of matrix materials after the ICCP procedure were analyzed, and the impact of ICCP on the piezoresistive effect was also investigated. By observing the piezoresistive effect of each CFRCM segment, the sequence of crack propagation and an approximate crack location can be inferred. Finally, the tensile performance of CFRCM with charge density was investigated. Leveraging the dual functionality of carbon fiber reinforcement and sensing, this study lays the groundwork for the development of a triple-functional system encompassing impressed current cathodic protection, structural strengthening, and structural health monitoring (ICCP-SS-SHM). Seawater sea-sand has the potential to be used as an alternative to freshwater river sand, which is beneficial for addressing the shortage of freshwater river sand resources.
 
Paper Details: 
 

Engineering Structures 313 (2024) 118317 

https://doi.org/10.1016/j.engstruct.2024.118317